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Abstract. This paper examines the effective admittance of an electrical network, using
a weighted graph as its representation. The resulting method of calculation is to use a
formula belonging to Haynsworth to compute the effective admittance. We show that
this value is also positive. Also, the derivative of the quadratic form, representing power
dissipated, is implemented to determine how various changes to the graph affect the
effective admittance.
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1. Introduction

To begin with, we will be looking only at connected networks. One important character-
istic of these electrical networks is that there is a distinction between boundary and interior
nodes [1]. Our networks may be complicated and certainly nonplanar, so it is efficient to
have a matrix formula to calculate the effective admittance. The matrices involved are part
of an electrical network problem that may be stated as an inverse problem or a forward
problem, depending on the information available [1].

The information in these problems include the structure of the graph, the admittances
on each edge, voltage applied at the boundary nodes, and the currents at boundary nodes.
The method of relation between the different data is to use Kirchhoff’s current and voltage
laws. The formula to calculate the effective admittance is used as another tool for solving
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these problems. It also allows for a derivative to be taken in order to better understand
the result of changes to the network.

2. The Network

We begin with a graph, Ω, with its boundary denoted as ∂Ω. Our network is made up of
voltage sources and electrical elements that are reactive, conductive, or a mixture of both.
The admittances for these elements are given on the edges of the graph and the voltage
is measured between two nodes in Ω. A known voltage source is applied to each of the
boundary nodes. The resulting current is measured at the boundary nodes, with positive
current flowing into the network. By Kirchhoff’s current law, the net current through any
interior node is zero.

2.1. The Effective Admittance. The effective admittance is equal to the admittance
measured between two nodes. Physically, this would be measured with an ohmmeter,
which applies a potential difference between the two nodes and measures the resulting
current. With these the current and voltage known, the conductance can be calculated
using Ohm’s law. Simply, the effective admittance is the value of a component that could
replace everything between those two nodes. The value of such an admittance should be
positive for a physical case, and this will be explicitly shown.

In our graphs, the boundary nodes are denoted by a closed circle. The interior nodes
are denoted by an open circle. Conductances are given on non-directional edges. Below is
an example, where the effective admittance would be taken between nodes 1 and 2. The
admittances are represented by α, β, θ, τ , and ρ. They combine in particular ways to
contribute to the overall conductance.
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Figure 1. This is a complete graph, Ω, with boundary nodes 1 and 2.

2.2. Matrix Representation. The most important mathematical relationship in our net-
work is given by Ohm’s Law. Typically, it is expressed as V = IR. However, it is convenient
to replace R with its inverse, C, the conductance. So, we have that V = I/C or V C = I.
This can be expressed by partitioned matrices. In particular, it becomes:

(1)

[
A B
BT C

] [
x
y

]
=

[
φ
0

]
The leftmost matrix, in particular, is called a Kirchhoff matrix. From this matrix is
derived a response matrix, Λ, which will defined shortly. When considering admittances,
the formula for power dissipated is dependent on a frequency, ω, but taken at a particular
time, it is not any different from considering only the real, power-dissipating part.
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2.2.1. The Kirchhoff Matrix. The network itself can be expressed by a Kirchhoff matrix,
K, with admittances between adjacent nodes as entries[1]. It is partitioned by node type.
The partition A contains boundary-to-boundary edges, B contains interior-to-boundary
edges, BT contains boundary-to-interior edges, and C contains interior-to-interior edges.

K =

[
A B
BT C

]
When right-multiplied by a partitioned matrix of boundary voltages, x, and interior volt-
ages, y, the result is a vector of currents into the network. The net current at any interior
node is zero, by Kirchhoff’s current law, and φ on the boundary nodes (1). It is a symmet-
ric matrix with row sums and column sums equal to zero. It has positive diagonal entries
and nonpositive off diagonal entries.

2.2.2. The Response Matrix. The current into a boundary node can also be produced by
a response matrix, Λ. It maps a boundary voltage vector to a boundary current vector [1].
Like the Kirchhoff matrix, it has nonpositive off-diagonal entries and positive entries on
the diagonal. By Kirchhoff’s current law, the row sums and column sums are zero, and it
is a symmetric matrix. In the book by Morrow and Curtis, it is given in Theorem 3.9 as
the Schur complement of the Kirchhoff matrix [1].

(2) Λ = A−BC−1BT

This formula depends on C being invertible. A proof of which is proven previously
inMorrow’s book. All of the other components are unaltered partitions of K. The re.sponse
matrix has qualities which make it nicer to work with than K.

3. Calculating Effective Admittance

There are several approaches to calculating the effective admittance. First, one may con-
sider the power dissipated by the entire network. If it increases, then so must the effective
admittance, for a fixed set of boundary voltages. Secondly, there exists a matrix formula
to calculate the effective admittance from K. We will begin with only conductances, which
have no imaginary part, and then extend our method to admittances.

3.1. Monotonicity of Effective Conductance. Showing that the effective conductance
is monotonic is as step toward showing the effective admittance is monotonic. It is not
yet clear that the matrix properties hold for complex-valued entries. The reactive portion
of an element does not dissipate power, however, it does affect the phase of the power
dissipated. This makes the values measured time dependent. When allowing complex-
valued admittances, the power dissipated will be taken at t = 0. When increasing an edge
of a graph, we will consider only increasing the real part, for the moment.
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3.2. Power Dissipated and Effective Conductance. The objective of this research
is to determine how the effective admittance depends on any given edge. But first we
need to look at the effective conductance. One way to do this is to determine how much
power is dissipated by an effective conductance and see how it changes when an edge is
altered. The expression for power dissipated is: power = voltage × current. In terms of our
matrices, with u as a voltage vector and the product of Ku computing the current, power
dissipated becomes uTKu. Since the entries that alter belong the the Kirchhoff matrix,
but we are just working on the boundary, it is helpful to show that, for some voltage vector
uT =

[
x y

]
, we have that uTKu = xTΛx.

Proof.

Ku =

[
A B
BT C

] [
x
y

]
=

[
φ
0

]
=

[
Ax+By
BTx+ Cy

]
φ = Ax+By

y = −C−1BTx

φ = (A−BC−1BT )x = Λx

Ku =

[
Λx
0

]
, and uTKu =

[
x y

] [Λx
0

]
= xTΛx

�

With this substitution, the power dissipated may be rewritten as xTΛx. Now, we may
prove the monotonicity of the effective admittance by showing that, for Λnew with an
increased edge, xTΛnewx ≥ xTΛoldx. We will consider values on edges that are purely
conductances and then extend to allow admittances.

3.3. Increasing Edges. The first step in examining increasing an edge is to look at the
different types of edges. Let δ ε ∂Ω and int ε interior of Ω. The first thing we want to
consider is if it is a δ-δ edge, δ-int edge, or int-int edge. It turns out that a previous calcu-
lation of the differential of L can be used to show that the power dissipated is monotonic
and independent of whether the increased edge is a boundary edge or an interior-edge[1].
To do this, one must recognize the the power dissipated is also the quadratic form.

Theorem 3.1. The derivative of the quadratic form, xTΛx, in a connected graph, Ω, with
conductances, γ, and voltages, u, is positive when an edge, or multiple edges, are increased
by a value, κ, with κ ≥ 0.

Proof. Replace the bilinear form < y,Λx > with the quadratic form < xT ,Λx >. Let gi
be the voltage at node i and let ∇i,jg = gi − gj . The quadratic form becomes:

(3) < xT ,Λx > = Qγ =
∑

γi,j(ui − uj)2

Following the proof on pages 77-79 and substituting γi,j + tκ for the current value, γi,j ,
and ut = u+ δut, for u, yields our desired result. Here κ is a change in a conductance, and
δut is a voltage function which is zero on the boundary nodes of Ω.
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In the book by Morrow and Curtis, equation 4.5 in section 4.6 shows,

(4)
d

dt
Bγ+tκ|t=0 =

∑
κi,j∇i,ju∇i,jw

Here we have two voltage functions u and w, with a change in conductance along edge i, j
of κi,j . It follows that for the quadratic form, when ∇i,ju = ∇i,jw, we have

(5)
d

dt
Qγ+tκ|t=0 =

∑
κi,j(∇i,ju)2

This value is positive for any increase, κi, on an edge. Likewise, the derivative of the
quadratic form, Q is negative for a negative change to an edge. So, we have proven that
the effective conductance is monotonic. �

3.3.1. Adding New Edges and Vertices. Adding a new edge is comparable to increasing an
edge from zero. Such an edge can be seen as a virtual edge. In any case, the same logic
used for increasing an existing edge value can be applied. An interesting case that has not
been explored is adding a node to either the boundary or the interior. This would require
a different approach because it would change the size of the Kirchhoff matrix. This would
be an interesting problem to pursue.

3.4. Monotonicity of Effective Admittance. It is a different problem when complex
numbers are involved. It is not clear that row sums or column sums must add to zero.
Other properties of the Kirchhoff and response matrix may not hold. In order to use these
matrices, one must first show that the Dirichlet (forward) problem is well-posed and that it
would have a unique solution for each frequency of the reactive elements. To make matters
simple, this was proven in a paper by Hashemi in 2005 for a connected network with at
least one resistor [2]. This makes sense: having no resistors would dissipate no power.

3.4.1. Invertibility of C. With the matrix K being admissible, the next step is to show
that C is invertible. A proof with a minor flaw is given in the Hashemi paper, for which I
provide a small correction. In the proof given, the expansion of the a quadratic form leave
off terms due to the rows ad columns in C not summing to zero.

Lemma 3.1. For a graph, Ω, with admittances, γ, the partition C of the Kirchhoff matrix,
K, is invertible.
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Proof. Suppose that for some voltage vector, x,with frequency γ, Cx(γ) = 0. It follows
that since no current flows, x̄TCx = 0. As a sum, we have,

x̄TCx =
∑
i,j

x̄i(ω)C(ω)xj(ω)

=
∑
i 6=j

x̄i(ω)C(ω)xj(ω) +

n∑
i=1

Cii(ω)|xi(ω)|2 +

n∑
i=1

dii(ω)|xi(ω)|2

=
∑
i<j

Cij(ω)[x̄i(ω)xj(ω) + x̄j(ω)xi(ω)] +
n∑
i=1

Cii(ω)|xi(ω)|2 +
n∑
i=1

dii(ω)|xi|2

=
∑
i<j

Cij(ω)[xi(ω)− xj(ω)][x̄j(ω)− x̄i(ω)] +
n∑
i=1

dii(ω)|xi|2

=
∑
i<j

−Cij(ω)|xi(ω)− xj(ω)|2 +

n∑
i=1

dii(ω)|xi|2 = 0

But this must mean that xi(ω) = xj(ω) for all i, j, ω. Also, di or xi must also be zero.
If this is true then x is a constant vector. These conditions imply that some new vector
u composed of x, with zeros in some entries, uTKu = 0. This implies that u is also a
constant vector. If this is true, since u contains some zeros, it must be the zero vector.
The conclusion is that C is invertible for all cases except in the trivial case. �

This proof is essentially the same as that presented by Hashemi. Added are the values
dii that would contribute to the row sums in C being zero, since that is a criteria of using
the quadratic form’s expression. They do not alter the result of the original proof, but are
necessary.

3.5. Haynsworth Formula for Effective Admittance. A simple way to calculate the
effective admittance is with a modified formula developed by Emilie Haynsworth, which is
based on the Schur complement [3]. It takes the Kirchhoff Matrix and uses subdeterminants
It can be modified to produce a single value.

As yet, I have not considered how the formula works beyond the case with two boundary
vertices. It should extend easily for more vertices and this would be an interesting problem.
To begin with, you have a graph, Ω, which is represented by K. In the partition A are
boundary-to-boundary edge values. For calculating the effective admittance between two
boundary edges, take the a boundary node entry a2,2 , the corresponding row in B, the
corresponding column in BT , and the entirety of C. Form a new square matrix (6). Then
take its determinant and divide this by the determinant of C, since we know C is invertible.
This will produce the effective resistance between the two boundary nodes.

Example 3.1.
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The affective admittance between A and B can be calculated by hand as : 2∗4
2+4 + 2∗1

2+1 = 2.
or it can be calculated by the formula:

Take the Kirchhoff matrix,

[
A B
BT C

]
. Take the entry a22 and the row to the right, b, the

column below it, bT , and C to form a new matrix,

[
a2,2 b
bT C

]
. Now, the effective admittance

between the two boundary nodes is given by:

(6)

det

[
a2,2 b
bT C

]
det[C]

=

det

 6 −2 −4
−2 3 0
−4 0 6


det

[
0 3
0 6

] =
36

18
= 2.

Since the formula works, it would be a simple way to determine if the effective admittance
is monotonic. One would simply have to take the derivative. It becomes much more
complicated with increase numbers of boundary vertices.

3.5.1. Proving Effective Admittance is Monotonic.

Theorem 3.1. The real part of the effective admittance is positive for a connected network,
Ω, with conductances, γij , when an edge, a2,2 is increased by a complex value, t, where
Re(t) > 0.

Proof. Suppose we have a network and we know that for every conductance, the real part

is positive, which is the physical case [2]. That implies that det

[
a2,2 b
bT C

]
and that det[C]

6= 0. Also it implies that the effective admittance,

det

[
a2,2 b
bT C

]
det[C] , is not zero. So, consider

increase the edge, a2,2, by t and producing

det

[
a2,2 + t b
bT C

]
det[C]

=

det

[
a2,2 + t b
bT C

]
+ det

[
t 0
bT C

]
det[C]

=

det

[
a2,2 b
bT C

]
det[C]

+ t

Suppose that this sum is zero for some choice of t. Then that would occur exactly when

t=−
det

[
a2,2 b
bT C

]
det[C] . For this value of t, the Re(t) cannot be > 0. This is only true if Re(t)

< 0, which imply that the value −t =

det

[
a2,2 b
bT C

]
det[C] would only be able to have Re(−t) > 0.
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So the effective admittance,

det

[
a2,2 b
bT C

]
det[C] , must have positive real part for any increased

value of t.
�

I would have like to have a theorem proof for any size network, but extension remains
incomplete. However, thiscurrent proof does extend to increasing the value of multiple
edges and possibly adding edges. It would be interesting to see that happens when values
in C are changed. It is still an open question whether or not adding vertices is possible to
consider in a similar manner. There are many more questions to be resolved about more
general, nonphysical cases. There are also open questions about how changes to the graph
affect recoverability. It would be interesting to look at how the effective resistance can add
to the recovery process.

References

[1] Curtis, Edward B. & Morrow, James A., Inverse Problems for Electrical Networks, Series on Applied
Mathematics - Vol. 13, World Scientific, New Jersey, 2000. 1,4 11, 42-43, 77-79

[2] Hashemi, Hila, ”Electrical Networks with Periodic Voltages and Complex Conductivities”, University
of Washington REU, 2005. 6-7

[3] Douglas E. Crabtree; Emilie V. Haynsworth, ”An Identity for the Schur Complement of a Matrix”
Proceedings of the American Mathematical Society, Vol. 22, No. 2 (Aug., 1969), pp. 364-366

[4] Wagner, D. G. (2005) ”Matroid inequalities from electrical network theory”. Electronic J. Combin.
Vol. 11 A1 (Apr., 2005) 1-3.


	1. Introduction
	2. The Network
	2.1. The Effective Admittance
	2.2. Matrix Representation

	3. Calculating Effective Admittance
	3.1. Monotonicity of Effective Conductance
	3.2. Power Dissipated and Effective Conductance
	3.3. Increasing Edges
	3.4. Monotonicity of Effective Admittance
	3.5. Haynsworth Formula for Effective Admittance

	References

